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Abstract

We introduce a novel method for assessing agent teamwork
based on their spatial coordination. Our approach models the
influence of spatial proximity on team formation and sus-
tained spatial dominance over adversaries using a Multi-agent
Markov Decision Process. We develop an algorithm to derive
efficient teamwork strategies by combining Monte Carlo Tree
Search and linear programming. When applied to team de-
fence in football (soccer) using real-world data, our approach
reduces opponent threat by 21%, outperforming optimised in-
dividual behaviour by 6%. Additionally, our model enhances
the predictive accuracy of future attack locations and provides
deeper insights compared to existing teamwork models that
do not explicitly consider the spatial dynamics of teamwork.

1 Introduction
Team Formation (TF) problems in multi-agent systems in-
volve heterogeneous agents collaborating to achieve com-
mon goals such as task completion or risk minimisation. In
TF problems, the environment is often dynamic and agents
face uncertainties about the positions and intentions of other
agents. In some settings, agents compete against adversaries,
adding complexity to decision-making. Understanding these
uncertainties and choosing the characteristics of optimal
teams is crucial for developing efficient TF systems.

Recent research explores various criteria for team for-
mation, such as task proximity (Capezzuto, Tarapore, and
Ramchurn 2021), agent waiting times (Amador, Okamoto,
and Zivan 2014), and the alignment of agent roles to
tasks (Aswale and Pinciroli 2023). For example, in social
ridesharing, agents form teams to minimise travel times
(Bistaffa et al. 2017), while in fire response, teams are
formed within spatial and temporal constraints to minimise
job completion time (Chen et al. 2021). These methods as-
sess team value using predefined metrics such as task com-
pletion time or team suitability for nearby tasks (Parker
et al. 2016), often overlooking specific agent-to-agent inter-
actions. Beal et al. (2020) studies directed agent interactions
in past teams to predict future team performance. However,
the approach does not consider spatial constraints commonly
found in TF problems (O’Leary and Cummings 2007).
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In many real-world teams, agents form spatial arrange-
ments to optimise team dominance across an area. For ex-
ample, Orcas encircle prey to minimise the chance of es-
cape and officers spread to cover criminal hot spots in secu-
rity settings. While previous TF models have explored agent
proximity and spatial constraints, such as information limi-
tations (Bulka, Gaston, and Desjardins 2007) or the impact
of spatial dispersion on agent communication (O’Leary and
Cummings 2007), they do not focus on optimising agent
communication. Studies in UAV teams consider agent coor-
dination to maximise task coverage in an area (Baker et al.
2016), however, no existing model studies optimising agent
interactions to maximise spatial dominance against an ad-
versary. We define this concept as spatial teamwork.

Against this background, we develop a novel spatial team-
work model focused on nearby agents, addressing agent un-
certainties regarding the intentions of teammates and ad-
versaries. We use a stochastic Multi-agent Markov Deci-
sion Process (MMDP) to model these dynamics. To navi-
gate these uncertainties, Monte Carlo Tree Search (MCTS)
is used to explore future scenarios and determine effective
spatial teamwork in dynamic conditions. This approach al-
lows agents to act individually or as subteams, where they
coordinate actions with a shared objective function.

We validate our approach using Association football data,
focusing on defensive strategies to minimise goal conces-
sion probability. Players are modelled as agents with their
own actions, ability to coordinate with teammates and objec-
tives. They operate with incomplete information regarding
future ball and player positions. Football transitions, includ-
ing player movements, are learned from real-world data.

This paper advances the state of the art as follows:

• We propose a novel model of spatial teamwork where a
dynamic defence domain with incomplete information is
modelled as an MMDP.

• An algorithm based on MCTS and linear programming
is proposed to optimise individual and teamwork-based
decision-making.

• We learn agent behaviour from real-world data and use it
to simulate future scenarios in a dynamic environment.

• We compare our algorithm to real-world outcomes and
show that our model reduces opponent threat by ∼21%,
outperforming optimised individual behavior by ∼6%.
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By so doing, we set a benchmark for optimising spatial
teamwork in dynamic real-world domains with adversaries.

The rest of the paper is structured as follows. In Section 2,
we discuss related work. Section 3 introduces the teamwork
model and Section 4 discusses MCTS to optimise agent con-
tributions. In Section 5, we apply our model to football and
evaluate our approach in Section 6. We critically review our
findings in Section 7 and then conclude.

2 Related Work
Before we present our spatial teamwork model we review
existing research related to TF and team optimisation.

Team Formation in Spatiotemporal Domains Several
studies address agent coordination with spatiotemporal con-
straints and considerations, such as agent proximity, travel
time and task deadlines (Amador, Okamoto, and Zivan
2014). Ramchurn et al. (2010) optimise task completion
in disaster response by considering agent travel distances
and deadlines using mixed integer programming. Capez-
zuto, Tarapore, and Ramchurn (2021) extend this approach
with a distributed algorithm for larger settings, tested on a
London fire brigade dataset. Similarly, Scerri et al. (2005)
develop a task allocation algorithm for extreme teams with
interdependent tasks and time windows, such as UAV teams
or hospitals. These approaches focus on task allocation but
do not address spatial interactions between agents.

Bistaffa et al. (2017) model a social network for coalition
formation to minimise agent travel times and fuel costs in so-
cial ridesharing. However, agent teams are limited to graph
connections. Amador, Okamoto, and Zivan (2014) balance
officer workload and incident importance in law enforce-
ment. These studies assign whole teams to tasks and do
not consider coordination between individual agents. Con-
versely, Mutzari, Gan, and Kraus (2021) apply cooperative
game theory in multi-defender Stackelberg security games
where agents disperse to independent targets. In contrast,
our paper emphasizes spatial coordination to maximise area
dominance instead of independent tasks. Additionally, un-
like Mutzari, Gan, and Kraus (2021), where the attacker has
complete knowledge, our problem has behavioural uncer-
tainties for both agents and adversaries. Our model focuses
on these uncertainties instead of environmental uncertainties
addressed in previous literature (Silver and Veness 2010).

Previous TF research has addressed spatiotemporal con-
straints using metrics such as agent arrival time to assess
team utility (Ramchurn et al. 2010). Other studies have ex-
plored how spatial proximity affects teammate communica-
tion (O’Leary and Cummings 2007). However, there is lim-
ited research on spatial interactions between teammates and
their impact on team outcomes. While studies on UAV teams
have coordinated agents to maximise task coverage (Baker
et al. 2016), no study, to our knowledge, has optimised agent
coordination for maximising spatial dominance against ad-
versaries. Our study targets optimising spatial arrangements
of agents to defend entire spatial planes, differing from pre-
vious studies that focus on independent targets or tasks.

Team-Based Optimisation Beal et al. (2020) present the
first approach to explore agent teamwork through directed

interactions, using real-world football passes to identify suc-
cessful player pairs. Our approach extends this by optimis-
ing spatial interactions and decision-making among multiple
agents. While Beal et al. (2020) successfully derive value
from directed agent interactions, they do not consider spa-
tial proximity and constraints, which are important in many
real-world teams (O’Leary and Cummings 2007).

MCTS is valued in team formation research for efficiently
sampling large state spaces. Wu and Ramchurn (2020) use
MCTS to generate search trees to optimise coalitions based
on team utility but do not consider spatiotemporal con-
straints. Baker et al. (2016) use MCTS to optimise agent ac-
tions, leveraging information sharing between trees with the
max-sum algorithm. In contrast, our study separately opti-
mises individual and team actions with MCTS, using linear
programming to determine effective teams.

Previous work in team sports has focused on optimising
team formation, such as Matthews, Ramchurn, and Chalki-
adakis (2012), who optimise fantasy football teams, and
Beal et al. (2020), who select optimised football lineups.
In contrast, our spatial teamwork model optimises agent in-
teractions to improve team collaboration. While some stud-
ies have optimised player behaviour (Rahimian, Oroojlooy,
and Toka 2021; Wang et al. 2024), they do not address spa-
tial interactions and communication between players. Previ-
ous work has also explored deep multi-agent reinforcement
learning for team information sharing and task decomposi-
tion in simulated football environments (Li et al. 2021; Yang
et al. 2022). In contrast, our approach focuses on spatial
dominance in real-world adversarial settings.

3 Spatial Teamwork Model
In this section, we model an attack-defense scenario inspired
by real-world systems, including team sports and security
settings, such as port security (Shieh et al. 2012) and nature
security (Xu et al. 2017). We define the environment, agents,
objectives, and agent subteams.

3.1 Basic Definitions
We define a defence scenario G as a sequence of timesteps
G = {t1, ..., tL}, where L is the number of timesteps and
may vary for different scenarios. There are variable time in-
tervals between timesteps. These scenarios may represent
waves of attacks in security settings or possession phases
in sports. Each scenario results in an outcome Ω, such as the
loss of possession in sports or a failed attack in security.

Agents operate in a two-dimensional Euclidean space Λ,
consisting of locations λ = (x, y), representing coordinates
on the plane. In contrast to typical defence scenarios with
independent targets, this scenario requires defence of the en-
tire plane, where each location λ has a value depending on
strategic and temporal factors. The value of a location λ at
timestep t is denoted as Vλ,t ∈ R.

Each scenario has a set of agents k ∈ K. The agents
are partitioned into two adversarial teams, a defending team
KD, and an attacking team KO. These designations are con-
sistent throughout the scenario timesteps. At each timestep
t, each agent k has a set of possible actions ak

t ∈ Ak
t . These
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actions refer to the movement of an agent from their current
location λk

t to a new location λk
t+1. We also define agent-

specific characteristics, such as role and physical condition,
that may impact agent behaviour as ζkt . The collective loca-
tions of a set of agents, defined as their spatial structure, are
formed by both teams at each timestep t based on the actions
chosen by each agent at the previous timestep. These spatial
structures can be denoted as CD

t and CO
t where CD

t contains
all defending agent locations λd

t∀d ∈ D. We build on these
definitions to explain team objectives in the next subsection.

3.2 Team Objective
Attackers and defenders aim to maximise control over the
space Λ. At timestep t, the control that defenders have over a
location λ is represented as a probability, Pr(Υλ,t|CD

t , CO
t ),

where Υλ,t indicates that the defenders KD control λ at time
t, which depends on the spatial structures CD

t and CO
t . De-

fensive utility is defined as a penalty corresponding to the
attacking team’s dominance over Λ, weighted by the value
of the locations λ ∈ Λ. Defending agents aim to minimise
this penalty. We represent team KD’s utility at time t as:

Ut(K
D) = -

∫
λ

Vλ,t · (1− Pr(Υλ,t|CD
t , CO

t )) dλ (1)

The optimal spatial structure for defenders KD at
timestep t is defined as CD∗

t = argmaxCD
t
Ut(K

D). The
defenders aim to minimise attacking control (i.e., maximise
their utility) throughout an entire scenario, defined as:

UG(K
D) =

T∑
t

Ut(K
D) (2)

Defenders face multiple challenges when optimising
UG(K

D). Firstly, there are spatiotemporal movement con-
straints requiring agents to move feasible distances between
locations within timestep intervals (see Section 5). Addition-
ally, agents do not know the actions that will be chosen by
their adversaries and teammates. Agents must therefore plan
their movement strategically to maximise future utility.

While attackers share similar goals and complexities, we
focus on defenders for this paper.

3.3 Agent Contribution and Subteam Formation
At each timestep t, agents can form subteams with nearby
teammates to optimise spatial coverage. A subteam is de-
fined as Ψ ⊆ KD, with Ψ as the set of subteams. Each
agent can only belong to one subteam at t, determined by
proximity-based K-means clustering, with the number of
clusters chosen by maximising the Silhouette coefficient
(Rousseeuw 1987). Subteam members share an objective
function and action at t, providing awareness of their sub-
team members’ actions, similar to human or intelligent sys-
tems communication. We define the objective function as:

Individual Agents Agents choose actions to improve their
contribution to team utility. Using cooperative game theory,
we value an agent’s impact by their marginal contribution.
The marginal contribution of agent kd to the team KD at

timestep t is defined as Θd
t = Ut(K

D)−Ut(K
D\{d}) where

Ut(K
D\{d}) is the utility achieved by the team if the agent

kd was not in the team KD at timestep t.

Agent Subteams Instead of maximising individual contri-
butions, agents may spatially coordinate with teammates in
a subteam Ψ to maximise their joint marginal contribution.
The marginal contribution of a subteam Ψ at timestep t is
ΘΨ

t = Ut(K
D) − Ut(K

D\Ψ). Agents must use context to
decide whether to act individually or coordinate in a sub-
team. Subteams offer certainty about each member’s actions
and can improve defensive efficiency, such as by surround-
ing adversaries. However, individual actions may be more
effective for defending nearby vulnerable locations.

3.4 Spatial Teamwork Multi-Agent MDP
Markov Decision Process models can define how a stochas-
tic environment changes as a decision-maker interacts
with it. An MMDP extends this to multiple decision-
making agents, each with their own action sets. We for-
mulate a scenario G as an MMDP defined as M =
⟨S, {Ak}k∈K ,Γ, {Rk}k∈K , γ⟩ with a set of states S, a set
of actions Ak for each agent k, Γ is the transition function,
Rk is a reward function for each agent k and γ is a discount
factor. Each MMDP state s ∈ S is a tuple s = ⟨CK

t , ζKt ⟩
where CK

t and ζKt are the agent locations and characteris-
tics defined previously in Section 3.1.

Each agent’s action space includes all possible spatial
movements within a realistic distance between timesteps
(see Section 5, this may differ depending on the application
domain). The transition function Γ = Pr(s′|s, {ak}k∈K)
represents the probability distribution over possible next
states s′ given the current state s, which contains informa-
tion on agent locations and characteristics, and each agent’s
selected action. The reward of action a for agent k chosen at
state s depends on the actions of other agents and the result-
ing state s′, denoted as Rk(s, a

k, s′). This reward reflects
the agent’s immediate contribution to team utility at state s′,
Θk

t′ . The discount factor determines the preference for im-
mediate versus future rewards.

The MMDP reaches a terminal state when the scenario G
ends, such as when possession is lost in sports or an attack
fails in security. The probability of a scenario concluding is
captured in the transition function Γ. In the next section, we
discuss techniques for optimising agent and team rewards.

4 Optimising Team Decision-Making
In this section, we explain the process of maximising team
reward by optimising agent actions and spatial teamwork.

4.1 Agent Objective
Agents aim to maximise their long-term contribution beyond
just the current timestep. This is defined below.

Agents An agent k aims to maximise long-term reward
over a scenario from state s using the Bellman equation:

V(s) = max
ak

(
∑
s′

Pr(s′|s, ak) · (Rk(s, a
k, s′) + γV(s′))) (3)
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Where V(s) is the Q-value of the optimal action at state
s. The agent must balance immediate rewards with poten-
tial future gains, despite uncertainty about future actions
of teammates and opponents, requiring them to predict be-
haviour and future state transition probabilities.

Subteams Agents in a subteam choose a joint action to
maximise their collective long-term contribution, V(s).

V(s) = max
aΨ

(
∑
s′

Pr(s′|s, aΨ) · (RΨ(s, a
Ψ, s′) + γV(s′))) (4)

Due to the many possible actions for each agent, there are
|A||K| possible next states from a current MMDP state s.
Despite the use of action discretisation in Section 5, there
are still approximately 1×1026 possible new states from the
current state. Given this complexity, computing exact solu-
tions for Equations 3 and 4 is infeasible. To address this,
we approximate agent behaviour (in Sections 5.2 and 5.3),
and use MCTS to estimate Q-values of actions by simulat-
ing many possible scenario outcomes resulting from actions.

4.2 Monte-Carlo Tree Search
MCTS is an anytime search algorithm used to optimise ac-
tions. We apply MCTS at a timestep t for all agents k ∈ KD

and all potential subteams Ψ ∈ Ψ by iteratively selecting ac-
tions and simulating the rest of the scenario G. The MCTS
algorithm runs as follows:

MCTS Algorithm
1) Selection - Select the most promising action from the

root using UCB1 (Auer, Cesa-Bianchi, and Fischer 2002)
until an unexplored or terminal node is reached. Each
node, Ns, with state s, leads to a child node with state
s′, determined by action a and transition function Γ.

2) Expansion - Expand a node Ns by randomly selecting
an unexplored action.

3) Simulation - At leaf node Ns, approximate V(s) using
cumulative reward in an MMDP simulation until a termi-
nal state is reached.

4) Backpropagation - Backpropagate the value of the new
child node Ns up the tree to the root.

Our transition function, for which we use a deep learning-
based model to compute (in Section 5), can be inefficient for
single simulations. To improve MCTS convergence speed,
we parallelise MCTS expansion and simulation. Unlike tra-
ditional leaf parallelization (Cazenave and Jouandeau 2007),
our approach uses a single thread and instead uses parallel
tree nodes to batch process state transitions using Γ.

At node Ns, we expand a random action and perform
M transitions (100 in this paper) to reach M leaf nodes
Ns′ = {Ns0 , ..., NsM }. We batch process these nodes using
the transition model Γ to produce new states s′. Each new
leaf node is then simulated until reaching a terminal state,
generating estimated values V(s′) = {V(s0), ...,V(sM )}.
In backpropagation, the Q-value of the parent node Ns is
updated with the average cumulative reward across all ex-
panded nodes V(s′), adjusting for the node count M .

4.3 Optimising Decision Selection
Given that we have optimised actions for each defending
agent k ∈ KD and subteam Ψ ∈ Ψ at timestep t, the
goal is to maximise the long-term utility of the entire team
UG(K

D). As agents and subteams independently select ac-
tions without knowledge of the rest of the team’s actions, it
is a crucial step to evaluate whether each agent should act in-
dividually or within their subteam. To find the combination
of individual and subteam actions that maximises UG(K

D),
we treat this as a linear programming problem:

maximise UG(K
D) (5)

subject to
∑

k∈KD

kz +
∑
Ψ∈Ψ

|Ψ| = |KD|

∑
Ψ∈Ψ

|Ψ| > 1

Where kz is a decision variable, set to 1 if agent k acts
individually and 0 if in a subteam. To solve this linear pro-
gram, we extract all combinations of individuals and sub-
teams and approximate UG(K

D) for each using one thou-
sand MMDP scenario simulations, similar to MCTS simula-
tion. The action set that maximises UG(K

D) is chosen as the
team’s joint action, aKD

∗ . We term this optimisation strategy
spatial teamwork. The entire process, including MCTS for
agents and subteams, to identify aKD

∗ is shown in Figure 1
and called the teamwork optimiser. The teamwork optimiser
allows for inter-agent interaction to maximise joint subteam
contributions, extending beyond a simple individual strategy
where each agent selects their own optimised action.

5 Applying Spatial Teamwork to Football
In this section, we apply our model to attack-defence scenar-
ios in football, illustrating its relevance and providing con-
text for agent actions and state transitions in the sport.

5.1 Multi-Agent Environment in Football
We define a period of possession in football as a defence sce-
nario G, consisting of timesteps t representing events (e.g., a
pass or shot), and ending with an outcome, Ω, which is either
a goal or a possession loss. The football pitch, Λ, is discre-
tised into a grid of (P ×Q) zones denoted as Φ, where ϕp,q

represents a specific zone. In this paper, the grid comprises
(25 × 16) zones. The value of pitch zones, Vϕ,t, are com-
puted using the popular Expected Threat model1, indicating
the probability of a goal in the next 5 events from zone ϕ.
Additionally, we update team utility to accommodate zones:

Ut(K
D) = -

∑
p∈P

∑
q∈Q

Vϕp,q ,t · (1− Pr(Υϕp,q ,t|C
D
t , CO

t )) (6)

Where Pr(Υϕp,q,t|CD
t , CO

t ) is the probability of defend-
ers KD winning possession if the ball arrives at zone ϕp,q .
This is calculated using zone centroids and a physics-based

1Expected Threat: https://karun.in/blog/expected-threat.html.
Last accessed July 12, 2024.
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Figure 1: The agent optimisation process. Starting from the current MMDP state, K-means clustering determines subteams.
MCTS approximates optimal actions for each subteam and agent, and MIP determines which subteams should form, resulting
in an action for each agent. Executing these actions causes state transitions, as shown here with a football example.

ball control model (Spearman 2018). In football, KD and
KO are the defending and attacking teams, each with 11
players. For each scenario G, the defending team KD is
determined by ball possession. The locations of players on
team KD at time t represent the team’s spatial structure CD

t .
To accommodate the football domain, we define an

MMDP state s as a tuple s = ⟨CK
t , ζkt , ϕ

B
t ⟩ where ϕB

t
is the current zone that the ball B occupies. Additionally,
for this domain, the player characteristics, ζkt , are a 3-tuple,
(κk

x, κ
k
y , J

k), containing the x and y velocity of the player
and their role in the team (e.g., Center Defender) respec-
tively. Player velocity at a new state s′ is calculated as the
average velocity required to move from their location in
state s to their location in state s′ within the time between
timesteps. The immediate reward Rk represents the contri-
bution of a player k towards control of valuable pitch space
at time t. In this paper, we set the discount factor to 1.

5.2 Transition Function for Football
The transition function in an MMDP predicts state changes
probabilistically. In our football framework, it models ball
and player movements from state to state. We learn transi-
tion probabilities from real-world data. Our transition func-
tion, Γ = Pr(s′|s, {ak}k∈K) is simplified using domain
knowledge by making player positions at the next state con-
ditional on ball movement. We define this as follows:

Γ(s′, s) = Pr(ΦB
t+1|s) ·

∏
k∈K

Pr(λk
t+1|s, {ak}k∈K ,ΦB

t+1) (7)

Where Pr(ΦB
t+1|s) is the probability of the ball moving

to each zone, or possession being lost, given the current
state s and Pr(λk

t+1|s, {ak}k∈K ,ΦB
t+1) is the probability of

player k’s next location given the current state, actions and
ball movement. We use a ball transition model (Spearman
2018) to compute Pr(ΦB

t+1|s) and sample from these prob-
abilities during state transitions. For successful ball transi-
tions, we extend a player location prediction model (Ev-
erett et al. 2023) and train it using data from 34 real foot-
ball games to predict player locations in future states. Un-
like Everett et al. (2023), which uses only on-ball data, our

model uses state information including player locations and
velocities, ball locations, player roles, and time elapsed be-
tween states (calculated using a ball travel model (Spear-
man 2018)). This deep-learning model, combining convolu-
tional and graph neural networks, achieves the lowest mean
Euclidean error (2.31m) compared to the same baselines in
(Everett et al. 2023) such as XGBoost (2.47m), graph neu-
ral network (2.56m), and a simple spline (5.03m). As player
movement depends on ball movement, from a state s and
actions {ak}k∈K , the number of possible new non-terminal
states equals the total number of pitch zones. Details on
player actions are given in the next subsection.

5.3 Player and Subteam Actions
We model player actions as directional biases that increase
the likelihood of players moving towards certain areas.
These biases adjust player velocity data in our transition
model, increasing movement probability towards the desired
direction while accounting for ball movement, teammates,
and opponents. Adversaries receive no velocity alteration,
imitating the average real-world behavior. We discretise ac-
tions to reduce the action space size, speeding up MCTS
convergence. The action space is described as follows:

Player Actions Each individual player selects an action
from one of eight possible directions, corresponding to
points on a compass-like axis: Up, Top Right, Right, Bottom
Right, Down, Bottom Left, Left, and Top Left. The selected
action alters the player’s velocity by 2 m/s in the specified
direction. We set a maximum speed of 5 m/s, which is ex-
tracted from Spearman (2018).

Subteam Actions Subteam actions ensure all players exe-
cute the same action, knowing that their sub-teammates will
do the same, modelling player communication. For example,
if the action is ’Up’, all subteam members increase veloc-
ity in that direction. To enhance flexibility, we use domain
knowledge to expand the action space beyond directional
bias: Avoid ball, Towards opponent, Avoid opponent, Spread
out and Close in. To focus subteam actions on coordination
rather than flexibility, we align each agent’s velocity with
the individual action closest to the chosen subteam action.
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6 Evaluation
In this section, we evaluate our model against real-world ac-
tions and numerous baselines, listed as follows:

• Random - Agents choose their movements randomly.
• Real-world - Threat accumulated in the real-world data.
• Simulated Real-world - Agents follow their real-world

actions within our MMDP simulations, bound to the clos-
est action in the action set.

• Individual optimiser - All agents optimise their contri-
bution individually without any subteams.

• Pair-Based optimiser - Agents choose actions in pairs
based on the Team-Centred model in (Beal et al. 2020).

• (Spatial) Teamwork optimiser - Agents have the option
to coordinate in subteams.

Inspired by (Beal et al. 2020), our Pair-Based strategy
segments teams into agent pairs to maximise pass success
frequency within pairs from past games. Unlike Beal et al.
(2020), who focus on lineup selection and in-possession at-
tacking link-ups, we modify this method to in-game defen-
sive decision-making by splitting the 10 outfield defenders
into 5 pairs (excluding the goalkeeper). This pair formation
does not explicitly consider spatial context and proximity.
Our MCTS model selects effective actions for these pairs.

We compute results for all events (e.g., passes and shots)
in a 34-game real-world football dataset in the K League 1
supplied to us by BePro Group Ltd.

6.1 Experiment 1 - Model Performance in
Dynamic Defence Simulations

We assess our selected actions against real-world decisions
and numerous baselines for each event in our dataset by sim-
ulating one thousand instances of the next 5 events using
our football MMDP model. Table 1 shows the accumulated
threat (goal concession probability) for each strategy.

The teamwork optimiser reduces threat by 20.8%, which
is 5.7% more than the individual optimiser, highlight-
ing the benefits of spatial collaboration. Similar threats in
real-world and simulated real-world scenarios support the
MMDP model’s accuracy of the real-world. Optimising
agent behaviour is critical in high-threat situations; there-
fore, we focus on these scenarios in Table 2. The results in
these high-threat scenarios draw similar conclusions.

Strategy Average Reward Reduction
Random -0.058 ± 0.001 -9.4%

Real-World -0.053 ± 0.001 0.0%
Simulated Real-World -0.051 ± 0.001 3.8%

Individual Optimiser -0.045 ± 0.001 15.1%
Pair-Based Optimiser -0.047 ± 0.001 11.3%
Teamwork Optimiser -0.042 ± 0.001 20.8%

Table 1: Average reward comparison for simulated play se-
quences using various decision-making strategies.

Strategy Average Reward Reduction
Random -0.084 ± 0.001 -18.3%

Real-World -0.071 ± 0.001 0.0%
Simulated Real-World -0.074 ± 0.001 -4.2%

Individual Optimiser -0.065 ± 0.001 8.5%
Pair-Based Optimiser -0.068 ± 0.001 4.2%
Teamwork Optimiser -0.061 ± 0.001 14.1%

Table 2: Average reward comparison for simulated play se-
quences in high threat situations (≥1% goal probability).

We analysed how the difference between the average re-
wards (teamwork optimiser vs. real-world reward) correlates
with the number of goals each team conceded in our dataset.
Despite noise from low scoring rates across 34 games, a sig-
nificant Pearson correlation coefficient of 0.71 (p < 0.05)
confirms the expected relationship between these variables.

Additionally, for every event, we compared threat levels at
the next real-world event with those from an augmented next
event where defenders chose the optimised actions. This
myopic approach assesses performance beyond the MMDP
simulation. Results showed that teams reduce threat at just
the real next event by 1.5% ± 0.6 and 2.3% ± 1.2 by using
the individual and teamwork optimisers respectively.

6.2 Experiment 2 - Attack Location Prediction
Using Subteam Collaboration

We have shown that our optimiser reduces overall team
threat. Next, we evaluate the subteam performance metric
(ΘΨ

t ) against individual metrics (Θd
t ) for predicting the zone

of the next attack (i.e., passes or shots). The zone that each
subteam centroid resides in, and the performance metric of
that subteam, are used to form a grid of features matching
the shape of Λ, and a simple convolutional neural network
model utilises these spatial features to predict the next attack
zone. Table 3 compares the predictive ability of subteam
metrics to individual metrics over five-fold cross-validation.

Metric Individual Subteam
Passes 0.156 ± 0.003 0.147 ± 0.001
Shots 0.0100 ± 0.0004 0.0093 ± 0.0002

Table 3: Log-loss scores of contribution metrics as features
for predicting future attack zones.

We find that subteam contributions better predict oppo-
nent attack locations than individual contributions. This em-
phasizes the value of analyzing agent coordination, as it un-
covers the impact of spatial teamwork on the predictability
of future attacks in dynamic settings such as team sports.

6.3 Experiment 3: Impact of Subteam
Configurations on Threat Reduction

In this experiment, we assess how varying numbers of sub-
teams impact threat reduction in real-world scenarios, aim-
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Figure 2: Effects of number of subteams on threat reduction.

Figure 3: Distribution of subteam sizes for varying cluster
numbers. Bar colours represent the number of subteams.

ing to identify the optimal number of players for effective
spatial teamwork. Figure 2 compares threat reduction for
various numbers of subteams using the teamwork optimiser.
We drive deeper insight into the varying subteam numbers
by looking at the distribution of subteam sizes in Figure 3.

These results show that clustering into five subteams or
using the optimal k-means silhouette score is most effective
for threat reduction. Figure 3 shows that these clusters often
form pairs, suggesting that spatial teamwork is most effec-
tive in pairs, aligning with Beal (2022), which found that
teamwork in football passing is best represented by pairs.

In many domains, agents have specific roles, such as
player positions in football. Our model most commonly sug-
gests subteam pairs as: (Center Defender, Center Defender),
(Center Forward, Center Forward), (Right Defender, Right
Midfield) and (Left Defender, Left Midfield). This aligns
with human expert views on important role-based pairs.

6.4 Experiment 4: Case Study Analysis of
Defensive Optimisations

In this experiment, we compare real-world defensive scenar-
ios with model-optimised decisions to show their impact on
game outcomes. Figure 4 highlights a specific defensive sit-
uation, demonstrating a 0.4% decrease in goal probability
(Ut(K

D)) due to the model’s recommendations. This case
study shows how suggested adjustments in positioning and
teamwork can significantly reduce goal likelihood and im-
prove team preparation in a visually compelling way.

7 Discussion
We validate our spatial teamwork model with real-world
football datasets, showing its effectiveness in improving spa-
tial dominance in dynamic settings. Football is a suitable do-
main due to its rich spatiotemporal data and the clear objec-
tive of preventing goals and winning matches. Our model
also has potential in other spatiotemporal defence domains,
including patrol, security, and other team sports. The model

Figure 4: Optimised positioning to reduce threat. There is
a 3.0% goal probability compared to 3.4% with real-world
positions. The heatmap shows the change in goal probability
(%) for each zone when shifting to optimised positioning.

may also be applicable beyond defence, such as for attack or
emergency response. Future research will extend the model
to other domains as we obtain more high-quality datasets.

The Pair-Based Optimiser improves on real-world perfor-
mance but is less effective at reducing threats compared to
other optimisers. This suggests that while optimising actions
in pairs is valuable (as shown in Experiment 3), accounting
for spatial context and proximity is crucial when optimising
for specific scenarios to avoid suboptimal communication
where individual actions may be preferable. Our findings in
Experiment 3 may further explain the effectiveness of the
teamwork model in (Beal et al. 2020) due to the implicit
link between spatial proximity and passing in football, and
we show that integrating spatial context into pair formation
is effective for in-game player decision-making.

Our approach optimises agent behaviour by simulating
outcomes and minimising average threat. Future work could
explore strategies such as a minimax approach to minimise
the threat of the worst-case scenario. We plan to evaluate
various approaches and the impact of game state, such as
maintaining a winning position, on optimised strategies.

The model’s primary use is post-scenario analysis to iden-
tify poor teamwork patterns and suggest improvements. It
can build databases of similar scenarios to assess typical
team responses. In football, this may inform team training.

8 Conclusion
In this paper, we propose a novel approach to agent co-
ordination in dynamic environments, setting a benchmark
for optimising spatial teamwork in adversarial settings. We
model defence against adversaries as an MMDP and use
MCTS to compute effective decisions. We apply this model
to football defence, learning play sequences from real-world
spatiotemporal data. Our MCTS approach reduces opponent
threat by up to 21% compared to real-world outcomes, with
an additional 6% reduction achieved using our spatial team-
work model over individual actions. We also show that our
model better predicts future attack locations compared to an
individual-based benchmark. Finally, we explain how our
model results may offer deeper insight into previous team-
work models that do not explicitly consider the relationship
between spatial proximity and teamwork.

23174



Acknowledgments
We thank Bepro Group Ltd for supporting and providing
the data resources for this work. The authors acknowledge
the use of the IRIDIS High Performance Computing Fa-
cility, and associated support services at the University of
Southampton, in the completion of this work. Gregory Ev-
erett was supported by Sentient Sports and Sarvapali Ram-
churn was supported by the UKRI Trustworthy Autonomous
Systems Hub (EP/V00784X/1) and Responsible AI UK
(EP/Y009800/1).

References
Amador, S.; Okamoto, S.; and Zivan, R. 2014. Dynamic
multi-agent task allocation with spatial and temporal con-
straints. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 28.
Aswale, A.; and Pinciroli, C. 2023. Heterogeneous Coali-
tion Formation and Scheduling with Multi-Skilled Robots.
In 2023 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), 5402–5409. IEEE.
Auer, P.; Cesa-Bianchi, N.; and Fischer, P. 2002. Finite-time
analysis of the multiarmed bandit problem. Machine learn-
ing, 47: 235–256.
Baker, C. A.; Ramchurn, S.; Teacy, W.; and Jennings, N. R.
2016. Planning search and rescue missions for UAV teams.
In ECAI 2016, 1777–1782. IOS Press.
Beal, R.; Changder, N.; Norman, T.; and Ramchurn, S. 2020.
Learning the value of teamwork to form efficient teams. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, 7063–7070.
Beal, R. J. 2022. Artificial intelligence in team sports. Ph.D.
thesis, University of Southampton.
Bistaffa, F.; Farinelli, A.; Chalkiadakis, G.; and Ramchurn,
S. D. 2017. A cooperative game-theoretic approach to the
social ridesharing problem. Artificial Intelligence, 246: 86–
117.
Bulka, B.; Gaston, M.; and Desjardins, M. 2007. Local strat-
egy learning in networked multi-agent team formation. Au-
tonomous Agents and Multi-Agent Systems, 15: 29–45.
Capezzuto, L.; Tarapore, D.; and Ramchurn, S. D. 2021.
Large-scale, dynamic and distributed coalition formation
with spatial and temporal constraints. In Multi-Agent Sys-
tems: 18th European Conference, EUMAS 2021, Virtual
Event, June 28–29, 2021, Revised Selected Papers 18, 108–
125. Springer.
Cazenave, T.; and Jouandeau, N. 2007. On the paralleliza-
tion of UCT. In Computer games workshop.
Chen, J.; Guo, Y.; Qiu, Z.; Xin, B.; Jia, Q.-S.; and Gui, W.
2021. Multiagent dynamic task assignment based on forest
fire point model. IEEE Transactions on Automation Science
and Engineering, 19(2): 833–849.
Everett, G.; Beal, R. J.; Matthews, T.; Early, J.; Norman,
T. J.; and Ramchurn, S. D. 2023. Inferring Player Lo-
cation in Sports Matches: Multi-Agent Spatial Imputation
from Limited Observations. In Proceedings of the 2023 In-
ternational Conference on Autonomous Agents and Multia-
gent Systems, 1643–1651.

Li, C.; Wang, T.; Wu, C.; Zhao, Q.; Yang, J.; and Zhang, C.
2021. Celebrating diversity in shared multi-agent reinforce-
ment learning. Advances in Neural Information Processing
Systems, 34: 3991–4002.
Matthews, T.; Ramchurn, S.; and Chalkiadakis, G. 2012.
Competing with humans at fantasy football: Team forma-
tion in large partially-observable domains. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 26,
1394–1400.
Mutzari, D.; Gan, J.; and Kraus, S. 2021. Coalition forma-
tion in multi-defender security games. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 35,
5603–5610.
O’Leary, M. B.; and Cummings, J. N. 2007. The spatial,
temporal, and configurational characteristics of geographic
dispersion in teams. MIS quarterly, 433–452.
Parker, J.; Nunes, E.; Godoy, J.; and Gini, M. 2016. Exploit-
ing spatial locality and heterogeneity of agents for search
and rescue teamwork. Journal of Field Robotics, 33(7): 877–
900.
Rahimian, P.; Oroojlooy, A.; and Toka, L. 2021. Towards
optimized actions in critical situations of soccer games with
deep reinforcement learning. In 2021 IEEE 8th Interna-
tional Conference on Data Science and Advanced Analytics
(DSAA), 1–12.
Ramchurn, S. D.; Polukarov, M.; Farinelli, A.; Truong, C.;
and Jennings, N. R. 2010. Coalition formation with spatial
and temporal constraints. In Proceedings of the 9th Inter-
national Conference on Autonomous Agents and Multiagent
Systems: volume 3-Volume 3, 1181–1188.
Rousseeuw, P. J. 1987. Silhouettes: a graphical aid to the
interpretation and validation of cluster analysis. Journal of
computational and applied mathematics, 20: 53–65.
Scerri, P.; Farinelli, A.; Okamoto, S.; and Tambe, M. 2005.
Allocating tasks in extreme teams. In Proceedings of the
fourth international joint conference on Autonomous agents
and multiagent systems, 727–734.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. Protect: A de-
ployed game theoretic system to protect the ports of the
united states. In Proceedings of the 11th international
conference on autonomous agents and multiagent systems-
volume 1, 13–20.
Silver, D.; and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. Advances in neural information processing
systems, 23.
Spearman, W. 2018. Beyond expected goals. In Proceedings
of the 12th MIT sloan sports analytics conference, 1–17.
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